数据平台建设的方案有哪几种?

2024-05-05 19:10

1. 数据平台建设的方案有哪几种?

1、常规数据仓库
数据仓库的重点,是对数据进行整合,同时也是对业务逻辑的一个梳理。数据仓库虽然也可以打包成SAAS那种Cube一类的东西来提升数据的读取性能,但是数据仓库的作用,更多的是为了解决公司的业务问题。
2、敏捷型数据集市
数据集市也是常见的一种方案,底层的数据产品与分析层绑定,使得应用层可以直接对底层数据产品中的数据进行拖拽式分析。数据集市,主要的优势在于对业务数据进行简单的、快速的整合,实现敏捷建模,并且大幅提升数据的处理速度。
3、MPP(大规模并行处理)架构
进入大数据时代以来,传统的主机计算模式已经不能满足需求了,分布式存储和分布式计算才是王道。大家所熟悉的Hadoop MapReduce框架以及MPP计算框架,都是基于这一背景产生。
MPP架构的代表产品,就是Greenplum。Greenplum的数据库引擎是基于Postgresql的,并且通过Interconnnect神器实现了对同一个集群中多个Postgresql实例的高效协同和并行计算。
4、Hadoop分布式系统架构
当然,大规模分布式系统架构,Hadoop依然站在不可代替的关键位置上。雅虎、Facebook、百度、淘宝等国内外大企,最初都是基于Hadoop来展开的。
Hadoop生态体系庞大,企业基于Hadoop所能实现的需求,也不仅限于数据分析,也包括机器学习、数据挖掘、实时系统等。企业搭建大数据系统平台,Hadoop的大数据处理能力、高可靠性、高容错性、开源性以及低成本,都使得它成为首选。
关于数据平台建设的方案有哪几种,环球青藤小编就和您分享到这里了。如果您对大数据工程有浓厚的兴趣,希望这篇文章可以为您提供帮助。如果您还想了解更多关于数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。

数据平台建设的方案有哪几种?

2. 有哪些成熟的数据平台建设方案?有案例么?

完整的数据平台建设方案,会涉及以下3个方面:
逻辑架构、应用架构、物理架构,
这些其实一个厂商就可以全部完成。下面我说说这数据平台建设方案的3方面具体是什么。
一、逻辑架构
数据源层:
•所有数据的源头。
•来源于多个业务系统。
•数据格式不统一,尚待清洗。
操作数据存储(ODS)层:
•介于业务系统与数据仓库间的隔离层, 通常在该层中完成ETL的大部分工作。
•用于存放从业务系统直接抽取出来的数据。
•通过分步汇总,逐步得到数据仓库所需分析数据。
•ETL中的大部分工作在ODS层完成。
数据仓库层:
•面向各业务主题的、集成的、稳定的、时变的数据。
•通常是汇总的、可冗余的数据。
•主要用于查询。
数据共享层:
•该层通过各类技术手段(如:WebService、WebAPI、ESB等)将数据仓库中的规范数据向外部共享。
•通过数据共享层,实现数据仓库、各业务系统间的联动。
•数据仓库的规范数据对于完善业务系统功能有重大推动作用。
数据分析层:
•单个主题更加集中。
•从各维度视角观察度量数据。
•技术上通常采用各种技术手段(如:列存储)提高查询性能。
二、物理架构
此为举例参考
三、应用架构
图中展示的,其实就是永洪科技他们帮我们梳理出来的数据平台建设方案的架构,而且他们对于我所在的行业也有很深的理解,帮助我们梳理了业务指标,从前期数据平台体系的建设,到后期具体业务场景下业务指标的梳理,都为我们提供了良好的支持。
以上数据平台的建设体系,希望能对题主有所帮助。

3. 怎样选择数据平台的建设方案

一、为何而搭建数据平台
业务跑的好好的,各系统稳定运行,为何还要搭建企业的数据平台?
这样的问题,心里想想就可以了,不要大声问出来。我来直接回答一下,公司一般在什么情况下需要搭建数据平台,对各种数据进行重新架构。
从业务上的视角来看:
1、业务系统过多,彼此的数据没有打通。这种情况下,涉及到数据分析就麻烦了,可能需要分析人员从多个系统中提取数据,再进行数据整合,之后才能分析。一次两次可以忍,天天干这个能忍吗?人为整合出错率高怎么控制?分析不及时效率低要不要处理?
从系统的视角来看:
2、业务系统压力大,而不巧,数据分析又是一项比较费资源的任务。那么自然会想到的,通过将数据抽取出来,独立服务器来处理数据查询、分析任务,来释放业务系统的压力。
3、性能问题,公司可以越做越大,同样的数据也会越来越大。可能是历史数据的积累,也可能是新数据内容的加入,当原始数据平台不能承受更大数据量的处理时,或者是效率已经十分低下时,重新构建一个大数据处理平台就是必须的了。
上面我列出了三种情况,但他们并非独立的,往往是其中两种甚至三种情况同时出现。一个数据平台的出现,不仅可以承担数据分析的压力,同样可以对业务数据进行整合,也会不同程度的提高数据处理的性能,基于数据平台实现更丰富的功能需求。
二、数据平台的建设有哪些方案可以选择
下文中的优缺点仅从企业选型的角度,并非方案本身的技术角度。
如果一句话回答的话,那就是:太多了(这是一句废话,我承认),但确实有非常多的方案可供选择,我懂的少,肯定是无法一一介绍,所以就分成了下面几类,相信也一定程度上覆盖了大部分企业的需求了。
1、 常规数据仓库:
概念不说了,既然是做数据这一行的,相信你比我还要清楚,不清楚的可以百度。它的重点在于数据整合,同时也是对业务逻辑的一个梳理。虽然它也可以打 包成ssas那种cube一类的东西来提升数据的读取性能,但是数据仓库的作用,更多的是为了解决公司的业务问题,而不仅仅是性能问题。这一点后面会详细 介绍。
关于这一方案的优缺点,直接说重点:
优点:
方案成熟,关于数据仓库的架构,不管是Inmon架构还是Kimball架构,都有着非常广泛的应用,而且相信能将这两种架构落地的人也不少。
实施简单,涉及的技术层面主要是仓库的建模以及etl的处理,很多软件公司具备数据仓库的实施能力,实施难度的大小更多的取决于业务逻辑的复杂程度,而并非技术上的实现。
灵活性强,说这句话要有对应场景的,数据仓库的建设是透明的,如果需要,可以对仓库的模型、etl逻辑进行修改,来满足变更的需求(当然,最好设计之初考虑的周全一点)。同时对于上层的分析而言,通过sql或者mdx对仓库数据的分析处理具备极强的灵活性。
缺点:
 
“实施周期长”,注意,我加了引号,对应下面的敏捷型数据集市,而且这点是相对的,实施周期的长与短要取决于业务逻辑的复杂性,时间是花在了业务逻辑的梳理,并非技术上的瓶颈。关于这点,后面会详细介绍。
数据的处理能力有限,这个有限,也是相对的,海量数据的处理它肯定不行,非关系型数据的处理它也不行,但是TB以下级别的数据,还是搞得定的(也取决于所采用的数据库系统),这个量级的数据,而相当一部分企业的数据,还是很难超过这个级别的。
2、 商业敏捷型数据集市:
底层的数据产品与分析层绑定,使得应用层可以直接对底层数据产品中的数据进行拖拽式分析。这一类产品的出现,其初衷是为了对业务数据进行简单的、快速的整合,实现敏捷建模,并且大幅提升数据的处理速度。目前来看,这些产品都达到了以上的目的。但它的优缺点也比较明显。
优点:
 
部署简单,敏捷开发,这也是这类产品最大的优点,和数据仓库相比,实施周期要短的多。实际上它也没什么严格的实施的概念,因为这类产品只是针对需要分析的数据,进行局部的关联,只考虑眼前要解决的问题就够了,迭代的能力更强些。
与上层的分析工具结合较好,上层的分析工具接入这类数据产品后,可直接实现数据的图形化展示和olap分析。对数据处理性能的提高,这类产品都对 数据的分析性能做了处理,虽然方式不尽相同,有内存映射文件存储的,也有分布式架构、列数据存储的。但无疑都一定程度上提高了数据的处理性能。
缺点:
 
首先,它是要收费的。
无法处理复杂的业务逻辑,这只是一个工具,它无法解决业务问题。这类工具中自带简单的etl功能,实现简单的数据处理和整合,而如果考虑到历史数 据,考虑到整体的数据之间的逻辑和关系,它一定是解决不了的。一个简单的例子,当某个表中,有两个字段,一个要保留历史数据,一个要更新历史数据,要怎样 实现自动处理。有一个观念是需要清楚的,不能指望一款工具来解决业务问题。这种数据产品仅仅是对当前的业务数据进行简单的整合,第一,数据是局部的,第 二,时间是当前的(其涵带的增量更新或者全量更新,是无法应对复杂的逻辑的,相信熟悉etl的人都知道这个过程有多复杂)。当然,对于一些公司来说,可能 需求只是对当前业务数据进行整合分析,那么这类产品就够了。(说实话,很多公司真的是懒得更长远的考虑,有一天没一天的,谁说的准呢)
l 灵活性低,这个也是没法避免的,越是操作简单的工具,他的灵活性肯定受限,因为封装住了,产品是不透明的,常规的需求用起来非常方便,但是遇到复杂的,发现对他内部不了解,你也没法修改,只有蛋疼的份。
从我的角度看,它是很难成为公司的数据中心的。
3、 MPP(大规模并行处理)架构的数据产品,以最近开源的greenplum为例

传 统的主机计算模式在海量数据面前,显得弱鸡。造价非常昂贵,同时技术上也无法满足高性能的计算,smp架构难于扩展,在独立主机的cpu计算和io吞吐 上,都没办法满足海量数据计算的需求。分布式存储和分布式计算正是解决这一问题的关键,不管是后面的MapReduce计算框架还是MPP计算框架,都是 在这一背景下产生的。
greenplum的数据库引擎是基于postgresql的,并且通过Interconnnect神器实现了对同一个集群中多个Postgresql实例的高效协同和并行计算。
同时,基于greenplum的数据平台建设,可以实现两个层面的处理,显而易见的一个是对数据处理性能的处理,greenplum的百科中宣称支 持50PB级海量数据的处理,考虑它有吹牛的成分,对目前greenplum实际应用情况的了解,100tb级左右的数据,是非常轻松的。另一个是数据仓 库可以搭建在greenplum中,这一层面上也是对业务逻辑的梳理,对公司业务数据的整合。
优点:
 
海量数据的支持,大量成熟的应用案例,所以我想这一点是不用怀疑的。
扩展性,据说可线性扩展到10000个节点,并且每增加一个节点,查询、加载性能都成线性增长。
 
易用性,不需要复杂的调优需求,并行处理由系统自动完成。依然是sql作为交语言,简单、灵活、强大。
高级功能,greenplum还研发了很多高级数据分析管理功能,例如人气很高的外部表,还有Primary/Mirror镜像保护机制,行/列混合存储等。
稳定性,greenplum原本作为一个纯商业数据产品,具有很长的历史,其稳定性相比于其他产品以及敏捷性数据集市是更加有保障的。 greenplum有非常多的应用案例,纳斯达克、纽约证券交易所、平安银行、建设银行、华为等都建立了基于greenplum的数据分析平台。其稳定性 是可以从侧面验证的,在15年9月份开源后,各大互联网公司也是一片欢腾,现在也接触了几家在使用greenplum的客户,对其评价都很高。
缺点:
 
本身来说,它的定位在olap领域,不擅长oltp交易系统。当然我们搭建公司的数据中心也不会是用来做交易系统的。
 
成本,两个方面的考虑,一是硬件成本,greenplum有其推荐的硬件规格,对内存、网卡都有要求。当然,在硬件选型上,需要达到一个平衡, 要在性能、容量、成本等多方面考虑,毕竟不能一味的追求性能,把采购部门吓到吧。另一个是实施成本,这里主要是人了,基本的是greenplum的安装配 置,再到greenplum中数据仓库的构建,都需要人和时间。(但是必须要说的是,人家软件都开源了,也省下了一笔钱啊)
技术门槛,这里是相对于上一个敏捷型数据集市的,greenplum的门槛肯定是要高一点了。
4、 hadoop分布式系统架构
关于hadoop,已经火的要爆炸了,greenplum的开源跟它也是脱不了关系的。有着高可靠性、高扩展性、高效性、高容错性的口碑。在互联网 领域有非常广泛的运用,雅虎、facebook、百度、淘宝等等等等。hadoop生态体系非常庞大,各公司基于hadoop所实现的也不仅限于数据分 析,也包括机器学习、数据挖掘、实时系统等。
当企业数据规模达到一定的量级,我想hadoop是各大企业的首选方案,到达这样一个层次的时候,我想企业所要解决的也不仅是性能问题,还会包括时效问题、更复杂的分析挖掘功能的实现等。非常典型的实时计算体系也与hadoop这一生态体系有着紧密的联系。
近些年来hadoop的易用性也有了很大的提升,sql-on-hadoop技术大量涌现,包括hive、impala、spark-sql等。尽 管其处理方式不同,但普遍相比于原始基于文件的Mapreduce,不管是性能还是易用性,都是有所提高的。也因此对mpp产品的市场产生了压力。
对于企业构建数据平台来说,hadoop的优势与劣势非常明显:它的大数据的处理能力、高可靠性、高容错性、开源性以及低成本(为什么说低成本,要 处理同样规模的数据,换一个其他方案试试呢)。缺点也就是他的体系的复杂,技术门槛较高(能搞定hadoop的公司规模一般都不小了)。
关于hadoop的优缺点对于公司的数据平台选型来说,影响已经不大了。需要上hadoop的时候,也没什么其它的方案好选择(要么太贵,要么不行),没到达这个数据量的时候,也没人愿意碰这东西。总之,不要为了大数据而大数据。
三、方案很多,企业要怎样选择呢?
环境太复杂,但是我想至少要从下面这几个方面去考虑吧。
1、 目的:
什么样的目的?就是文中开始部分的三种情况呀(不好意思,自大了,肯定有其它情况,欢迎向“jiago王”补充),或者是其中几个的组合。
做事方法都一样,哪怕是中午出去吃饭,也是要在心里有个目的,这顿饭是为了吃饱,还是吃爽,或者为了拍别人的马屁,然后才好选择去吃什么。
当然,要明确数据平台的建设目的,哪里是那么容易的,初衷与讨论后确认的目标或许是不一致的。
公司要搭建一个数据平台的初衷可能很简单,只是为了减轻业务系统的压力,将数据拉出来后再分析,如果目的真的就这么单纯,还真的没有必要大动干戈 了。如果是独立系统的话,直接将业务系统的数据库复制出来一份就好了;如果是多系统,选类似finecube那种型敏捷型的商业数据产品也够了,快速建 模,直接用finebi或者finereport接入进去就能实现数据的可视化与olap分析。
但是,既然已经决定要将数据平台独立出来了,就不再多考虑一点吗?多个系统的数据,不趁机梳理整合一下?当前只有分析业务数据的需求,以后会不会考虑到历史数据呢?这种敏捷的方案能够支撑明年、后年的需求吗?
任何公司要搭建数据平台,都不是一件小事,多花一两个月实施你可能觉得累,多花一周两周的时间,认真的思考一下总可以的吧。雷军不是说过这样一句话:不能以战术上的勤奋,掩盖战略上的懒惰。
2、 数据量:
根据公司的数据规模选择合适的方案,这里说多了都是废话。
3、 成本:
包括时间成本和金钱,不必多说。但是这里有一个问题想提一下,发现很多公司,要么不上数据平台,一旦有了这样的计划,就恨不得马上把平台搭出来用起来,时间成本不肯花,这样的情况很容易考虑欠缺,也容易被数据实施方忽悠。
关于方案选择的建议,举以下3 1个场景
场景a:
要实现对业务数据的快速提取和分析,多个业务系统,没有达到海量数据,不考虑历史数据,不需要依照业务逻辑对数据进行系统的梳理,这种情况下,可以考虑敏捷型的bi工具自带的数据底层。
简单来讲,这种场景仅仅是在技术层面上,完成对数据的整合与提速,并没有从业务层面上对数据进行建模。他可以满足一定的分析需求,但是不能成为公司的数据中心。
场景b:
要搭建公司级的数据中心,打通各系统之间的数据。非常明显的,需要搭建一个数据仓库。这时就需要进一步考虑公司数据的量级了,如果是小数据量,TB 级以下,那么在传统数据库中建这样一个数据仓库就可以了,如果数据量达到几十上百TB,或者可见的在未来几年内数据会达到这样一个规模,可以将仓库搭在 greenplum中。
这种场景应该是适用于大部分公司,对于大部分企业来说,数据量都不会PB级别,更多的是在TB级以下。
场景c:
公司数据爆发式增长,原有的数据平台无法承担海量数据的处理,那么就建议考虑hadoop这种大数据平台了。它一定是公司的数据中心,这样一个角 色,仓库是少不了的,可以将原来的仓库直接搬到hive中去。这种数据量比较大的情况要怎样呈现,因为hive的性能较差,它的即席查询可以接 impala,也可以接greenplum,因为impala的并发量不是那么高,而greenplum正好有它的外部表(也就是greenplum创建 一张表,表的特性叫做外部表,读取的内容是hadoop的hive里的),正好和hadoop完美的融合(当然也可以不用外部表)。
场景d:
这个是后面补充的,当公司原本有一个数据仓库,但历史数据了堆积过多,分析性能下降,要怎么办?两个方案可以考虑,比较长远的,可以将仓库以及数据 迁移到greenplum中,形成一个新的数据平台,一个独立的数据平台,可以产生更多的可能性;比较快速的,是可以将类似finecube那种敏捷型数 据产品接入原来的仓库,这样来提升数据的处理性能,满足分析的要求。
四、关于方案选型时可能会出现的误区
(忽略业务的复杂性,要用工具来解决或者是绕开业务的逻辑。)
这个是我最近遇到过的,客户要做报表平台,有三个业务系统的数据需要整合。但是急于变现,不想搭建传统的数据仓库,所以从敏捷型的bi工具中选型。 工具厂商对自己数据产品的描述,一般着重于他的快速实施、性能的优化、以及自带的基本etl功能。这样容易给客户造成误区,就是通过这一产品可快速搭建出 一个公司级别的数据中心,满足于顶层对数据的需求。
然而在后期突然意识到,工具所解决的,仅仅是在技术层面上简化了工具的使用的复杂性,把etl和数据集市封装在一起,并且提高了数据的性能,但是并没有从业务层面上实现数据的建模,很多细节问题无法处理。
虽然敏捷开发非常诱人,如果业务系统简单,或者只需要分析当前状态的业务数据,不需要公司级的数据中心,那么确实是一个非常好的方案。然而这些问题还没有考虑清楚,对敏捷产品有了过高的期望,后面是会遇到些麻烦的。
除此之外,可能还会有为了大数据而大数据的,但是这些我在实际的工作中还没有遇到。
最后总结一下,企业选择数据平台的方案,有着不同的原因,要合理的选型,既要充分的考虑搭建数据平台的目的,也要对各种方案有着充分的认识。
仅从个人的角度,对于数据层面来说,还是倾向于一些灵活性很强的方案的,因为数据中心对于公司来说太重要了,我更希望它是透明的,是可以被自己完全掌控的,这样才有能力实现对数据中心更加充分的利用。因为,我不知道未来需要它去承担一个什么样的角色。
希望可以帮助你,望采纳

怎样选择数据平台的建设方案

4. 大数据平台建设有哪些步骤以及需要注意的问题

大数据平台的搭建步骤:
1、linux系统安装    一般使用开源版的Redhat系统--CentOS作为底层平台。为了提供稳定的硬件基础,在给硬盘做RAID和挂载数据存储节点的时,需要按情况配置。2、分布式计算平台/组件安装  国内外的分布式系统的大多使用的是Hadoop系列开源系统。Hadoop的核心是HDFS,一个分布式的文件系统。在其基础上常用的组件有Yarn、Zookeeper、Hive、Hbase、Sqoop、Impala、ElasticSearch、Spark等使用开源组件的优点:1)使用者众多,很多bug可以在网上找的答案(这往往是开发中最耗时的地方)。2)开源组件一般免费,学习和维护相对方便。3)开源组件一般会持续更新,提供必要的更新服务『当然还需要手动做更新操作』。4)因为代码开源,若出bug可自由对源码作修改维护。3、数据导入数据导入的工具是Sqoop。用它可以将数据从文件或者传统数据库导入到分布式平台『一般主要导入到Hive,也可将数据导入到Hbase』。4、数据分析数据分析一般包括两个阶段:数据预处理和数据建模分析。数据预处理是为后面的建模分析做准备,主要工作时从海量数据中提取可用特征,建立大宽表。这个过程可能会用到Hive SQL,Spark QL和Impala。数据建模分析是针对预处理提取的特征/数据建模,得到想要的结果。这一块最好用的是Spark。常用的机器学习算法,如朴素贝叶斯、逻辑回归、决策树、神经网络、TFIDF、协同过滤等,都已经在ML lib里面,调用比较方便。5、结果可视化及输出API可视化一般式对结果或部分原始数据做展示。一般有两种情况,行数据展示,和列查找展示。要基于大数据平台做展示,会需要用到ElasticSearch和Hbase。Hbase提供快速『ms级别』的行查找。 ElasticSearch可以实现列索引,提供快速列查找。 大数据平台搭建中的主要问题1、稳定性 Stability 理论上来说,稳定性是分布式系统最大的优势,因为它可以通过多台机器做数据及程序运行备份以确保系统稳定。但也由于大数据平台部署于多台机器上,配置不合适,也可能成为最大的问题。 2、可扩展性 Scalability 如何快速扩展已有大数据平台,在其基础上扩充新的机器是云计算等领域应用的关键问题。在实际2B的应用中,有时需要增减机器来满足新的需求。如何在保留原有功能的情况下,快速扩充平台是实际应用中的常见问题。